Over 10 Million Study Resources Now at Your Fingertips


Download as :
Rating : ⭐⭐⭐⭐⭐
Price : $10.99
Language:EN
Pages: 4
Words: 668

Linear Equation Solvers Assignment Answers

Your question:

1. Write a program that will solve for the unknown of a system of linear equation using cholesky’s method. The program should be able solve different system of linear equation from a single interface.

2. Write a program that will solve for the unknown of a system of linear equation using gauss Jordan method. The program should be able to solve different system of linear equation from a single interface.

Assignment Help Answers with Step-by-Step Explanation:

#include <vector>

#include <cmath>

        for (int j = 0; j <= i; j++) {

            double sum = 0.0;

                L[i][j] = sqrt(A[i][i] - sum);

            } else {

            }

        }

    int n = A.size();

    std::vector<std::vector<double>> L(n, std::vector<double>(n, 0.0));

    for (int i = 0; i < n; i++) {

        double sum = 0.0;

    }

    // Backward substitution

        }

        x[i] = (y[i] - sum) / L[i][i];

    // Define your system of linear equations here.

    std::vector<std::vector<double>> A = {{4, 2, 2},

    std::cout << "Solution: ";

    for (double x : solution) {

}

2. Gauss-Jordan Method

    int n = A.size();

    for (int i = 0; i < n; i++) {

            A[i][j] /= pivot;

        }

                double factor = A[k][i];

                for (int j = i; j < n; j++) {

        }

    }

    for (int i = 0; i < A.size(); i++) {

        augmentedMatrix[i].push_back(b[i]);

}

int main() {

    std::vector<double> b = {8, 14, 4};

    std::vector<double> solution = solveGaussJordan(A, b);

    std::cout << std::endl;

    return 0;

How It Works
Login account
Login Your Account
Add to cart
Add to Cart
Payment
Make payment
Document download
Download File
PageId: ELI59811AC
img
Uploaded by :
MYR3MGxE
Page 1 Preview
assignment help answers with stepbystep explanatio
Sell Your Old Documents & Earn Wallet Balance